Music listening is one of the most pleasurable experiences for the human being (Dube and Le Bel, 2003). Music can be defined as the organization of the tone over the time. By mean of the exposure to musical pieces in everyday life, listeners acquire sensitivity to the regularities of the tonal system (Tillmann, 2005). This knowledge creates expectancy in the listeners, with experience of tension, suspense or relaxation, when the rules are confirmed, or violated (Meyer, 2008; Ockelford, 2008). Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network of limbic and paralimbic brain structures. Activations in the ventral striatum, anterior superior insula, and in Rolandic operculum were observed in healthy subjects, during the listening of pleasant music (Koelsch et al., 2006). Moreover, inferior frontolateral cortex, ventrolateral premotor cortex, and anterior part of the superior temporal gyrus were found active in the processing of musical syntax, whereas the processing of musical semantics appears to activate posterior temporal regions (Koelsch, 2005).
Some studies also evidenced a correlation between autonomic activity (modulation of the High frequency component recorded by Heart Rate Variability), and emotion evoked by musical listening (Iwanaga et al., 2005; Orini et al., 2010).
The emotions felt by the listening to music were described as linked to the musical structures (Juslin and Sloboda, 2010). The parameters, defined as Formal Complexity and General Dynamics, provide informations about the relationship between musical structures and emotions (Imberty, 1976). Imberty defines Formal Complexity and General Dynamics, combining musical variables (as note duration, metric interval, density of notes per time unit, loudness, accents, syncopation and other characteristics of melodic, harmonic, and rhythmic structures) associating them to the emotion induced by the music (Imberty, 1976, 1997). In particular, the General Dynamics is defined as the number per time unit of notes played and their relative intensity, while the Formal Complexity as the intrinsic homogeneity of the musical structures (i.e., melodic recorsivity, rhythmic structure, dissonance etc;
Previous studies (based on the analysis of the first 300 heartbeats recorded) have been designed to verify the possibility to classify positive or negative emotions elicited by different musical stimuli selected for their General Dynamics and Formal Complexity (Riganello et al., 2008), and their possible emotional effect in VS/UWS patients (Riganello et al., 2010a). The aim of this study was to verify the influence of the musical stimuli complexity on the autonomic responses in VS/UWS patients, by the HRV nuLF and SampEn parameters analysis during the listening of the first 3 min of the selected musical samples. The two musical samples (Boccherini and Mussorgsky; Riganello et al., 2010a) have been compared by the nuLF and SampEn parameters, taking in account the possible different effect observed in the VS/UWS patients. The hypothesis is that music with high Formal Complexity and General Dynamics reduces the autonomic response in VS/UWS patients.
The experience of music listening is based on the idea that the music represents and induces emotions, which are, respectively, perceived and felt by listeners, although these two aspects may not coincide (Gabrielsson, 2002). The association of different psychological mechanisms, associated to the physiological correlates of the music listening, were suggested (Harrer and Harrer, 1968). Several modes of music listening were described as associated to conscious (e.g., structural analytic, associative oriented. ect.) or unconscious (e.g., associative emotional, motor-kinetic, etc.) listening (Rauhe, 1975; Rösing, 1985; Behne, 1986). As reported, the music internal structure plays a primary role in the induction of emotions, and rhythmic aspects are considered the major determinants of physiological responses (Gomez and Danuser, 2007). More, the tonal variation was correlated to the psychophysiological happy/sad distinction (Khalfa et al., 2008).
It was shown that the applications of music in medicine can be used to stabilize vital signs and manage symptoms in the short-term (Hanser, 2014). The listening of classical music and of rock music or noise were related to a small variance or an increase/decrease of Mayer Wave components and Respiratory Sinus Arrhythmia components, respectively (Umemura and Honda, 1998). Relaxation and music therapy have been found effective modalities to reduce stress and anxiety in patients of a coronary care unit (Zimmerman et al., 1988; Guzzetta, 1989; Hanser, 2014). Music therapy enhanced parasympathetic activities and decreased Congestive Heart Failure by reducing plasma cytokine and catecholamine levels (Okada et al., 2009).
SOURCE: Francesco Riganello,* Maria D. Cortese, Francesco Arcuri, Maria Quintieri, and Giuliano Dolce (2015)
MUSIC PSYCHOLOGY RESEARCH
ADVISORY BOARD
Maestra Celeste S. Sanchez, MT
Ms. Maricel G. Morales, Viva Artist
Prof. Shedy Dee C. Mallari, RPm, LPT
Ms. Karen M. Atendido, Seiko Artist
Ms. Maria Blessilda M. Bascon, RN, LPT
Maestro Conrado Manuel N. Del Rosario
Dr. Peter Charles Kutschera, PhD, LMSW
Dr. Homer J. Yabut, PhD, RPsy
Prof. Alain Bernard A. Andal, MA, LPT, RPm, RGC
Pastor Robert Albios
Atty. Francisco S. Yabut
Instructor John Vernon Nuguid
Instructor Manuel S. Cordero
Instructor Dareen L. Bonzon
Prof. Jose Maria G. Pelayo III, MASD, MP-MT
Music Psychology Research (2010), Angeles City, Philippines, aims to update empirical data that is essential for music psychology research. This group of academic researchers is committed to ensure a creative and dynamic approach that utilizes music in any form of program development and psychotherapy. The Advisory Board Members are academic professionals contributing their specific expertise in Psychology, Neuroscience and Music.
Facebook Page: Music Psychology Research (MPR) 2010 / Psychological Assessment and Research Evaluation (PARE) 2014 / Assessment, Counseling, Alumni and Placement (ACAP Center 2017)